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Longitudinal data in peripheral blood 
confirm that PM20D1 is a quantitative trait locus 
(QTL) for Alzheimer’s disease and implicate its 
dynamic role in disease progression
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Abstract 

Background: While Alzheimer’s disease (AD) remains one of the most challenging diseases to tackle, genome-wide 
genetic/epigenetic studies reveal many disease-associated risk loci, which sheds new light onto disease heritability, 
provides novel insights to understand its underlying mechanism and potentially offers easily measurable biomarkers 
for early diagnosis and intervention.

Methods: We analyzed whole-genome DNA methylation data collected from peripheral blood in a cohort (n = 649) 
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and compared the DNA methylation level at baseline 
among participants diagnosed with AD (n = 87), mild cognitive impairment (MCI, n = 175) and normal controls 
(n = 162), to identify differentially methylated regions (DMRs). We also leveraged up to 4 years of longitudinal DNA 
methylation data, sampled at approximately 1 year intervals to model alterations in methylation levels at DMRs to 
delineate methylation changes associated with aging and disease progression, by linear mixed-effects (LME) mod-
eling for the unchanged diagnosis groups (AD, MCI and control, respectively) and U-shape testing for those with 
changed diagnosis (converters).

Results: When compared with controls, patients with MCI consistently displayed promoter hypomethylation at 
methylation QTL (mQTL) gene locus PM20D1. This promoter hypomethylation was even more prominent in patients 
with mild to moderate AD. This is in stark contrast with previously reported hypermethylation in hippocampal and 
frontal cortex brain tissues in patients with advanced-stage AD at this locus. From longitudinal data, we show that 
initial promoter hypomethylation of PM20D1 during MCI and early stage AD is reversed to eventual promoter hyper-
methylation in late stage AD, which helps to complete a fuller picture of methylation dynamics. We also confirm this 
observation in an independent cohort from the Religious Orders Study and Memory and Aging Project (ROSMAP) 
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Background
Over a decade of genetics research on Alzheimer’s dis-
ease (AD) has identified 30+ susceptibility genes which 
altogether account for less than 50% of the heritability of 
late-onset Alzheimer’s disease (LOAD) [1]. With continu-
ous efforts to thoroughly characterize the genetic risk for 
LOAD, emerging evidence suggests that epigenetics also 
plays a significant role in disease pathogenesis, progres-
sion and resilience [2–4]. Among the various epigenetic 
modifications, DNA methylation is the most widely stud-
ied mechanism due to its interpretable relationship to 
disease-associated gene expression, the availability of dif-
ferent experimental assays and advanced analysis tools, 
thus enabling high throughput processing. It has also 
attracted increasing attention as a potential biomarker, 
with accumulating evidence indicating that abnormal 
methylation can be used for detection and diagnosis of 
disease, prediction of response to therapeutic interven-
tions and prognosis of outcome [5]. For AD, the methyla-
tion profile from peripheral tissues such as blood would 
be especially useful as a diagnostic tool due to the nonin-
vasive, easily measurable characteristics and the possibil-
ity of longitudinal study [6].

Specifically for LOAD, in postmortem brain tissues, 
cell type-specific methylation signatures and differential 
methylation dynamics were reported for several brain 
pathology-related genes such as ankyrin 1 (ANK1) [7, 
8], histone deacetylases (HDACs) [9, 10] and homeobox 
genes (HOXs) [11, 12]. More recently, analysis from bio-
logically and technically independent datasets focusing 
on the comparison between samples from healthy con-
trols and patients with advanced-stage AD shows that 
only one gene, peptidase M20-domain-containing pro-
tein 1(PM20D1), a biosynthetic enzyme for a class of 
N-lipidated amino acids in  vivo, consistently displayed 
promoter hypermethylation in patients with AD [13]. 
Furthermore, it has been demonstrated that PM20D1 is 
a methylation and expression QTL coupled to an AD-risk 
associated haplotype defined by rs708727 and rs960603, 
which displays enhancer-like characteristics and con-
tacts the PM20D1 promoter via a haplotype-dependent, 
CCCTC-binding-factor-mediated chromatin loop [13]. 
Nevertheless, these findings, which were all observed 
in various brain tissues, are not necessarily translatable 

to the whole blood due to the highly dynamic nature of 
peripheral tissues and the heterogeneity of disease. Multi-
ple studies have attempted to reproduce the observations 
of methylation changes in brain and peripheral blood, 
but few consistent results have emerged. For example, 
hypermethylation of ALK1 in two cortical regions (supe-
rior temporal gyrus and prefrontal cortex) of AD sub-
jects has been observed; however, these alterations were 
not observed in whole blood obtained premortem from 
the same individuals [8]. TNF-α shows significant hypo-
methylation in the cortex samples of AD patients but not 
in their blood samples [14]. These findings indicate that 
some of the epigenetic mechanisms being uncovered in 
AD pathology are only relevant to brain cells, not blood 
cells. Furthermore, many epigenetic alterations observed 
in blood cells could not be detected in the brain [15]. A 
global correlation of epigenetic changes in the brain with 
peripheral tissues is yet to be established.

Still there is evidence indicating that blood DNA meth-
ylation dynamics may mediate detectable transcriptomic 
changes [8] and many DNA methylation variations have 
consistent effects across tissues [16]. Analysis of methy-
lomic co-variation between tissues, specifically between 
whole blood and different regions of brain demonstrated 
that for a portion of the methylation sites, blood meth-
ylation levels are correlated with those from brain, and 
suggested the utility of using a blood-based approach to 
identify potential biomarkers of psychiatric disease phe-
notypes [17]. Given the difficulty in accessing and collect-
ing brain tissue samples especially longitudinally to track 
disease diagnosis and progression, valuable information 
could still be obtained from blood-based DNA methyla-
tion studies [6].

We set out to utilize the data available from the ADNI 
study which comprised a large cohort with both blood-
based longitudinal DNA methylation data and cross-
sectional gene expression data, by starting from baseline 
DNA methylation measurements in the stable diagnos-
tic groups to detect the differential methylated regions 
(DMRs) at the group level, then tracking the dynamic 
change of the DMR among the different diagnostic sub-
groups, including those converters. It is one of the ongo-
ing efforts to exploit the data to seek understanding of 
the heterogenicity and dynamic nature of AD. The ample 

Study using DNA methylation and gene expression data from brain tissues as neuropathological staging (Braak score) 
advances.

Conclusions: Our results confirm that PM20D1 is an mQTL in AD and demonstrate that it plays a dynamic role at 
different stages of the disease. Further in-depth study is thus warranted to fully decipher its role in the evolution of AD 
and potentially explore its utility as a blood-based biomarker for AD.
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information possessed by the longitudinal data in the 
ADNI cohort could help validate the previous findings 
observed in brain tissues while providing unprecedented 
perspectives into the dynamics of the epigenetic back-
ground of AD. Based on the ADNI data, we now report 
the preliminary findings that are observed at PM20D1 
locus: (1) confirmation of PM20D1 as a methylation and 
expression QTL coupled to an AD-risk associated geno-
type defined by rs708727 in peripheral blood, mostly 
consistent with what is been observed in the brain tissues 
from the hippocampus and the frontal cortex; and (2) the 
methylation profile’s moving direction at the early stage 
of AD, which is contrary to what is observed in brain tis-
sues with advanced-stage AD (Braak staging ≥ 5) [13]. 
We modeled the alteration of methylation levels at the 
promoter regions of the gene as a function of disease pro-
gression and validated the findings in a separate cohort 
with both methylation and gene expression data from 
brain tissues. This work helps characterize a compre-
hensive picture for the epigenetic change at the PM20D1 
gene locus associated with the onset, as well as progres-
sion of AD and suggests its potential as a blood-based 
biomarker.

Results
Methylation data processing and quality check (QC)
The details of the ADNI study, the experiment design 
for methylation array and initial data QC are available 
online at: http://adni.loni.usc.edu/metho ds/docum ents/ 
and http://adni.loni.usc.edu/data-sampl es/acces s-data/. 
Briefly, DNA was isolated and plated out at NCRAD and 
DNA methylation profiling was performed at AbbVie for a 
total of 1920 samples, including 1719 unique samples and 
201 technical replicates (653 unique individuals). Lon-
gitudinal DNA samples at baseline, and +up to 4 years, 
sampled at ~ 1 year apart were obtained from all subjects. 
Samples were randomized using a modified incomplete 
balanced block design, whereby all samples from a sub-
ject were placed on the same chip, with remaining chip 
space occupied by age- and sex-matched samples. Sub-
jects from different diagnosis groups were placed on 
the same chip to avoid confounding. Unused chip space 
was leveraged for technical reproducibility assessment 
via replicated DNA samples. Sample and probe quality 
control, including detection P values, checking the sex of 
samples and sample identity, removed 15 samples from 
the data. The released raw data from ADNI methylation 
array consist of 1905 samples at > 850,000 CpG sites, cre-
ating unique challenges in data processing and QC. We 
chose to process the data with the most recently devel-
oped ‘bigmelon’ package in R, a memory efficient method 
to import the raw data and export the data matrices with-
out any filtering steps. All the downstream analyses were 

accomplished by the ChAMP pipeline for an integrated 
workflow, which employs a set of tools for filtering, nor-
malization, batch correction and cell type correction for 
data from whole blood samples. Preprocessing of the 
data resulted in 685,446 probes for 1,905 samples. Singu-
lar value decomposition (SVD) analysis [18] after batch 
correction found no covariates contribute to significant 
components of variation. Mean value for each estimated 
cell proportion shows the cell type profile agrees well 
with known cell type profile for whole blood samples, 
with granulocytes/neutrophils making up 50–60% of 
the samples and lymphocytes/monocytes making up the 
rest (Fig. 1). At baseline, the proportion of granulocytes 
was higher (p = 0.0027, fdr = 0.048, two-sided Student’s 
t test), and that of CD8T cells was lower (p = 0.0059, 
fdr = 0.053, two-sided Student’s t test) in the AD patients, 
indicating an alteration of immune response in the AD 
patients. All other cell types remain comparable among 
the subjects. This observation also does not change in the 
full longitudinal data time frame.

Differentially methylated regions (DMRs) at baseline
We first focused on those subjects (579 out of 649) whose 
age > 65 at the baseline measurements (LOAD). A sub-
set of the subjects (424) kept a stable diagnosis during 
the whole sampling time frame throughout all the visits; 
thus, their baseline measurements were used for DMR 
detection. A region of ~ 900 bp on chromosome 1 dem-
onstrated hypomethylation in the AD patients in com-
parison with control (p = 7.48E−06, fwer = 0.004), as 
well as AD vs MCI (p = 9.11E−05, fwer = 0.048). This 
is also the only DMR passing the corrected fwer cutoff 
(0.05). This region also demonstrated moderate hypo-
methylation when we compared MCI against control 
(p = 0.00237, fwer = 0.748), indicating a gradual methyla-
tion decrease during disease progression (Table 1, Fig. 2, 
Additional file 1: Table S1). Interestingly, this region lies 
within the promoter region of gene PM20D1, the recently 
reported mQTL/eQTL for AD, albeit it is hypermethyl-
ated in some brain regions of subjects with advanced 
LOAD [13]. We therefore focused on the longitudinal 
data for the 10 CpG probes from the Illumina EPIC array 
in this region (Table  2) to fully dissect the methylomic 
changes for PM20D1 in peripheral blood, throughout the 
course of disease progression.

Allelic dosage effect in the DMR
The effects on the methylation values ( β = M

M+U+α
 , 

where M and U are the methylated and unmethylated 
signal intensities, and α is an offset) in the DMR regions 
from alternate allele doses of the two SNP sites were 
quantitatively evaluated by linear regression at the base-
line. We stratified the cohort by diagnostic status during 

http://adni.loni.usc.edu/methods/documents/
http://adni.loni.usc.edu/data-samples/access-data/
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the full sampling time frame by AD only (87 subjects), 
MCI only (174 subjects), control only (162 subjects) 
and converters (117 subjects), and effect was evaluated 
for the three stable diagnosis groups, respectively. We 
observed that in all diagnostic groups, rs708727 had the 
most prominent effect as expected (p < 2e−16 in control 
and MCI, p < 0.0001 in AD), while rs960603 was not sig-
nificant for any of the 3 groups (p > 0.1) (Table 3, Fig. 3, 
Additional file 2: Table S2). The slopes of rs708727 were 
comparable in all diagnostic groups (p > 0.05 by testing 
the differences of the slopes). For both control and MCI 
groups, age and sex were not significantly associated 

(p > 0.05), while in AD, sex plays a role in the methylation 
change (p < 0.05 in 6 probes, p < 0.1 in 9 probes in total), 
where female shows higher β values.

Longitudinal data analysis
To evaluate longitudinal changes in methylation levels, 
we first stratified the cohort by diagnosis status.For stable 
diagnosis groups (AD/MCI/control), β values were fit to 
age, with sex, allelic dosages for rs708727 and rs960603 
as fixed effect covariates by LME models. Consistent with 
the baseline data, allelic dose for rs708727 demonstrates 
the most dominant effect on the methylation levels in all 

Fig. 1 Comparison of individual cell type across control (n = 162), MCI (n = 175) and AD (n = 87) groups with stable diagnosis at baseline 
measurements. Shown in a granulocytes (Gran), in b CD4T cells, in c CD8T cells, in d natural killer (NK) cells, in e monocytes (Mono) and in f B 
cells. Blue line indicates comparison between AD cases versus control subjects; black line indicates comparison between MCI cases versus control 
subjects. P Value for the differences in cell composition estimates across groups as per T test is indicated

Table 1 The differentially methylated regions (DMRs) in  PM20D1 promoter region as  detected by  the  comparisons 
among control, MCI and AD

Comparison Rank Chr Start End Width Value Area p value fwer p.value
Area

Fwer area

AD versus control 1 chr1 205,818,668 205,819,609 941 −0.476 5.23 7.48E−06 0.004 0.000217 0.112

AD versus MCI 1 chr1 205,818,956 205,819,609 653 −0.373 3.73 9.11E−05 0.048 0.000615 0.276

MCI versus control 5 chr1 205,818,956 205,819,609 653 −0.143 1.43 0.00237 0.748 0.00597 0.952



Page 5 of 18Wang et al. Clin Epigenet          (2020) 12:189  

the groups (p < 2.2e−16), while that of rs960603 is not 
significant (p > 0.1). On top of the effect of allelic dose of 
rs708727, it also shows an increasing trend of the slope 
from control to MCI, then to AD (AD vs control, p < 0.1 
at 4 probes). For both MCI and control groups, no other 
variables show any effects on any of the probes (p > 0.1). 
In contrast, in AD patients, after controlling allelic dose 
effect, at least half of the probes (4 probes with p < 0.05, 6 
probes with p < 0.1) still show significant age-dependent 
methylation elevations (Table  4, Fig.  4a–c, Additional 
file 3: Table S3). Also consistent with the model of allelic 
dosage effect at baseline, a majority of the probes (6 

probes with p < 0.05, 9 probes with p < 0.1) also show sex-
dependent methylation elevation. Another interesting 
finding is the weak positive correlation between methyla-
tion level and p-tau181 values in plasma (3 probes with 
p < 0.05, Additional file  3: Table  S3) as well as the sex 
effect (3 probes with p < 0.05, 6 probes with p < 0.1).

To test if there is a turning point for the methylation 
level of PM20D1 in the disease progression process, we 
employed the U-shape test by the two-lines method on 
the longitudinal data for the converters group (117 sub-
jects). We adopted the ‘two-lines’ U-shape test approach 
to demonstrate (and statistically test) that there is a 

Fig. 2 Graphical representation of differentially methylated region (DMR) near PM20D1 gene locus. Genomic location is indicated by chromosome 
position based on Genome Reference Consortium Human Build 37 (GRCh37). Transcripts are indicated by light blue arrows. Solid line represents β 
values for all the CpGs constituting the significant region, where AD is colored in red, MCI in blue and control in green

Table 2. 10 CpG probes and their respective β values from EPIC array in the DMR region at PM20D1

CpG probes Control MCI AD MAPINFO UCSC refgene group

cg17178900 0.568 ± 0.200 0.549 ± 0.193 0.509 ± 0.208 205818956 Body

cg14159672 0.605 ± 0.233 0.586 ± 0.225 0.526 ± 0.241 205819179 1st exon

cg14893161 0.493 ± 0.220 0.472 ± 0.217 0.414 ± 0.216 205819251 5′UTR; 1st exon

cg07533224 0.627 ± 0.221 0.609 ± 0.215 0.549 ± 0.232 205819345 TSS200

cg12898220 0.685 ± 0.207 0.667 ± 0.201 0.605 ± 0.224 205819356 TSS200

cg05841700 0.390 ± 0.190 0.378 ± 0.182 0.330 ± 0.177 205819383 TSS200

cg11965913 0.447 ± 0.240 0.427 ± 0.234 0.373 ± 0.229 205819406 TSS200

cg24503407 0.589 ± 0.213 0.568 ± 0.210 0.510 ± 0.220 205819492 TSS1500

cg16334093 0.720 ± 0.136 0.705 ± 0.210 0.672 ± 0.147 205819600 TSS1500

cg07157834 0.739 ± 0.127 0.727 ± 0.129 0.695 ± 0.136 205819609 TSS1500
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non-monotonical trajectory in the methylation level as 
a function of disease progression, by characterizing the 
nonlinearity without making functional-form assump-
tions about f(x). This approach has also been adopted 
in the AD research field previously to model disease 
progression [19]. For each probe, a clear U shape was 

observed (p < 0.01 on both slopes), with the breakpoint 
identified at ~ 78 to 79  years of old (Additional file  3: 
Table S3, Fig. 4d). Allelic doses of rs708727 and rs960603 
also show significant effect on the correlation, although 
the former is more prominent than the later. Consistent 
with our previous analysis, we also detected a sex effect 

Table 3 Model summary for  the  allelic dosage effects of  rs708727 on  the  β values at  one of  the  representative CpG 
probes (cg14159672)

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

dx Effects Model statistics

variant Estimate SE t value Pr( >|t|) Signif. codes

Control (Intercept) 0.1745 0.1522 1.15 0.254 Residual SD 0.1444

rs708727 0.2662 0.0218 12.23  < 2E−16 *** Multiple r2 0.6267

rs960603 −0.0120 0.0229 −0.52 0.602 Adjusted r2 0.6172

Age 0.0031 0.0019 1.66 0.100 F-statistic 65.9 (4/157 DF)

Sex −0.0165 0.0230 −0.72 0.476 p value  < 2.2E−16

MCI (Intercept) 0.3613 0.1437 2.51 0.013 * Residual SD 0.1532

rs708727 0.2544 0.0228 11.17  < 2E−16 *** Multiple r2 0.5468

rs960603 −0.0125 0.0226 −0.55 0.580 Adjusted r2 0.536

Age 0.0001 0.0019 0.03 0.973 F-statistic 50.97 (4/169 DF)

Sex 0.0030 0.0239 0.13 0.901 p value  < 2.2E−16

AD (Intercept) −0.0555 0.2317 −0.24 0.811 Residual SD 0.173

rs708727 0.2654 0.0455 5.84 1.02E−07 *** Multiple r2 0.5096

rs960603 0.0016 0.0394 0.04 0.968 Adjusted r2 0.4857

Age 0.0036 0.0029 1.27 0.208 F-statistic 21.31 (4/82 DF)

Sex 0.0874 0.0400 2.19 0.032 * p value 4.49E−12

All stable (Intercept) 0.1951 0.0941 2.07 0.039 * Residual SD 0.155

rs708727 0.2643 0.0150 17.58  < 2e−16 *** Multiple r2 0.5638

rs960603 −0.0090 0.0150 −0.60 0.549 Adjusted r2 0.5597

Age 0.0020 0.0012 1.69 0.093 F-statistic 135.1 (4/418 DF)

Sex 0.0143 0.0152 0.94 0.348 p value  < 2.2E−16

Fig. 3 Methylation change as allelic dose of rs708727 changes modeled by β values at baseline regressed with allelic dose of rs708727 at one 
of the representative CpG probes (cg14159672). Scatter plot is colored by the allelic doses of rs708727 where red = 0 (GG), green = 1 (GA), and 
blue = 2 (AA). An overall linear fit line is also shown. Panel a depicts control group, b depicts MCI group, and c depicts AD group
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in the majority of the probes (5 probes with p < 0.05, 7 
probes with p < 0.1, t test).

Correlation of methylation data with gene expression
To characterize associations between methylation 
changes and expression of PMD20D1, we integrated 
available DNA methylation data from subjects with a 
stable diagnosis, with matched whole blood gene expres-
sion data. For all 10 probes, we observed an inverse 
correlation between probe methylation β value and 
PM20D1 expression (Additional file  4: Table  S4, Fig.  5), 
with p < 0.001 at 6 probes and p < 0.01 at 8 probes. We 
again observed a significant association between dosage 
of rs708727 and PM20D1 expression (p < 0.0001, t test), 
while that of rs960603 shows negligible effect (p > 0.1, t 
test). We did not observe associations between sex, age 
or diagnosis and PM20D1 gene expression.

Strikingly, we observed that the observed association 
between cg05841700 and PM20D1 was entirely driven 
by subjects with an allelic dose of 0, homozygous GG 
at rs708727. When the correlation is stratified by allelic 
doses of rs708727, it is apparent that only in the hypo-
methylated samples (allelic dose = 0, homozygous GG) 
there is a significant linear correlation (Fig. 5, red line and 

dots). There is no such linear correlation in the heterozy-
gous samples (allelic dose = 1, heterozygous GA, Fig.  5, 
green line and dots), or even less so in the hypermeth-
ylated samples (allelic dose = 2, homozygous AA, Fig. 5, 
blue line and dots). This is consistent with the recent dis-
covery that the methylation level of PM20D1 promoter 
cannot be directly translated into gene expression, due 
to blockage of an enhancer downstream for the hyper-
methylated groups (AD-risk associated haplotype). Only 
from individuals with unmethylated PM20D1 where the 
enhancer region physically interacts with the promoter, 
can PM20D1 transcription begin [13]. The current study 
provides numeric representations of the relationship and 
confirms a similar observation that is made in a periph-
eral tissue (blood) in comparison with the findings origi-
nally reported in brain tissue samples [13].

Data from brain tissue support findings in whole blood
As a validation of the methylation alteration at the 
PM20D1 promoter region observed in blood-based data, 
we investigated DNA methylation changes at 6 CpG sites 
profiled from postmortem brain prefrontal cortex tissue 
samples collected as part of the ROSMAP cohort. We 
observed a strong association between CpG methylation 

Table 4 Model summary for the LME modeling between age and the β values at one of the representative CpG probes 
(cg14893161). Fixed effects from  age, sex, allelic dosages of  the  two SNPs and  random effects from  subject (RID), chip 
slide and array are shown

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

dx Fixed effects Random effects

Variant Estimate SE df t value Pr( >|t|) Signif. codes Groups Name Variance SD

Control (Intercept) 0.2544 0.1185 312.70 2.15 0.0326 * RID (Intercept) 0.0154 0.1239

Age 0.0010 0.0014 340.10 0.68 0.4948 Slide (Intercept) 0.0030 0.0544

Sex −0.0299 0.0218 158.80 −1.37 0.1715 Array (Intercept) 0.0000 0.0025

rs708727 0.2392 0.0203 154.90 11.76  < 2E−16 *** Residual 0.0017 0.0408

rs960603 0.0018 0.0215 159.60 0.08 0.9339

MCI (Intercept) 0.2973 0.1064 351.20 2.795 0.00547 ** RID (Intercept) 0.0123 0.1108

Age −0.0010 0.0013 385.40 −0.710 0.4782 Slide (Intercept) 0.0089 0.0943

Sex 0.0071 0.0221 168.30 0.321 0.7482 Array (Intercept) 0.0001 0.0077

rs708727 0.2676 0.0210 167.00 12.742  < 2E−16 *** Residual 0.0014 0.0374

rs960603 −0.0038 0.0206 165.30 −0.187 0.8520

AD (Intercept) −0.2992 0.1659 117.40 −1.803 0.07391 RID (Intercept) 0.0156 0.1250

Age 0.0056 0.0020 122.80 2.775 0.00638 ** Slide (Intercept) 0.0081 0.0899

Sex 0.0696 0.0351 83.48 1.983 0.0506 Array (Intercept) 0.0000 0.0050

rs708727 0.2722 0.0379 69.96 7.179 5.90E−10 *** Residual 0.0019 0.0432

rs960603 0.0006 0.0335 77.22 0.019 0.9849

All stable (Intercept) 0.0996 0.0715 798.00 1.391 0.1645 RID (Intercept) 0.0132 0.1150

Age 0.0015 0.0009 864.10 1.733 0.0835 Slide (Intercept) 0.0080 0.0897

Sex 0.0089 0.0144 442.00 0.622 0.5343 Array (Intercept) 0.0000 0.0054

rs708727 0.2831 0.0128 340.10 22.051  < 2e−16 *** Residual 0.0017 0.0408

rs960603 0.0038 0.0131 374.50 0.288 0.7733
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and Braak staging (p < 0.05) in participants with an AD 
diagnosis (Table 5, Additional file 5: Table S5, Fig. 6). We 
did not observe any association in the control group for 
any of the 8 CpG sites, and only one probe was found to 
be significantly associated with Braak staging in the MCI 
group (p = 0.038 at cg24503407), and another marginally 
significant (p = 0.070 at cg17178900). When combined 
together, there is a linear correlation (p < 0.05) between 
methylation level and Braak score at 6 out of the 8 probes 
for all the subjects. This correlation could be attributed 
to the larger sample size, AD subgroup and wider range 
of Braak stages in the overall group. Again, rs708727 

was found to be a highly significant (p < 2e−16) covari-
ant of all probes, while rs960603 is not. In contrast with 
our previous analysis, we did not observe an association 
with sex. Interestingly, the correlation between DNA 
methylation levels and pathological biomarkers (amyloid 
and tangles) shows a positive association of quantitative 
overall amyloid level at 3 probes in the AD subgroup, 1 
probe in the MCI subgroup and 0 in the controls out of 
the 8 probes in total. For tangles, there is no association 
of PM20D1 methylation at all for any of the diagnostic 
subgroups, but a weak association in the overall group 
(p < 0.05 for 4 out of 8 probes, Additional file 5: Table S5). 

Fig. 4 Methylation change as disease/age progresses modeled by β values regressed with age at one of the representative CpG probes 
(cg14893161). Scatter plot is colored by the allelic doses of rs708727 where red = 0 (GG), green = 1 (GA), and blue = 2 (AA) in panels a–c. An overall 
linear fit line is also shown. Panel a depicts control group, b depicts MCI group, and c depicts AD group. Panel d depicts all the conversion cases 
where a U-shape is fit and a break point is marked
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We also observed an inverse linear correlation between 
β value and PM20D1 expression (Additional file  6: 
Table S6, Additional file 9: Fig. S1). Consistent with our 
findings within the blood-based ADNI data, after strati-
fication by rs708727 genotype, the observed linear cor-
relation was primarily attributed to the lower AD-risk 
populations (rs708727 allelic dose = 0, GG).

Direction comparison of DNA methylation between brain 
tissues and whole blood
The consistent findings between the different brain 
regions and the peripheral blood from different cohorts 
prompted a direct comparison between DNA methyla-
tion in blood with brain regions for the CpG probes at 
PM20D1 promoter region, using published results in the 
third independent cohort (the London cohort). Across 
the 8 CpG probes from the Methylation 450  K array at 
PM20D1 promoter region, the positive correlation of 
methylation between blood and any of the four brain 
regions is all highly significant, with correlation coeffi-
cient ranging from 0.857 to 0.976 (p < 0.0001, Additional 
file  7: Table  S7, Additional file  9: Fig.  S2). Of note, this 
correlation is regardless of age, sex or pathological state 
of the individuals, highlighting a consistent interindi-
vidual covariance in whole blood and that observed in 
all four brain regions, specific to the promoter region 
of PM20D1. The clear trimodal distribution of DNA 
methylation suggests that the mQTL mediates much of 

the observed cross-tissue similarities, and the profile at 
PM20D1 in blood could be used as a proxy to predict 
DNA methylation levels in the brain [20].

In summary, our results collectively demonstrate that 
there is a U-shaped dynamic trajectory in the methyla-
tion profile for PM20D1 promoter in the whole blood 
samples from ADNI cohort, from normal state to MCI 
then to LOAD. The change trend of the methylation 
profile at the same promoter in the brain samples from 
the ROSMAP cohort, and the remarkable correlation 
between blood and brain and between several brain tis-
sues in the third cohort confirm that this is a universal 
observation conserved in different tissue types across dif-
ferent demographics.

Discussions
Early diagnosis and treatment of AD have been called out 
as the most urgent problem to tackle for this second cen-
tury disease [21]. Nevertheless, to date not a single easy-
to-measure biomarker has been fully established for its 
diagnosis and it remains elusive to identify blood-based 
biomarkers that will pinpoint AD in its earliest phases. 
As the most important goal is to detect AD at the earliest 
possible stage (pre-dementia) and identify ways to track 
the disease’s progression with biomarkers, ADNI data 
provide unique opportunity to observe the drastic change 
of molecular profiles during disease progression. Data 
obtained from microarray whole-genome DNA meth-
ylation profiling enable large scope in both time frame 
and sample size offering unprecedented insights into 
the dynamics of epigenetic signatures during the early 
phases in a large AD cohort. On the other hand, epige-
netic signatures are largely tissue-specific; so understand-
ing how observations obtained from peripheral tissue 
such as blood might relate to brain tissues needs further 
examination.

As a pioneering study in exploring the whole dataset, 
we made a direct comparison of baseline measurements 
among control, MCI, and AD groups from the whole-
genome methylation profiling data. We found that the 
promoter of PM20D1 gene locus consistently displayed 
hypomethylation from control to MCI, and even fur-
ther to symptomatic AD. PM20D1 has recently been 
reported as an mQTL in two major AD affected brain 
regions, the hippocampus and the frontal cortex, based 
on the comparisons between samples from healthy con-
trols and patients with advanced-stage AD, although it is 
been found to be hypermethylated in the latter [13]. In 
the report, an allele-dependent correlation with PM20D1 
promoter methylation is identified for the rs708727–
rs960603 haplotype. In the proposed mechanistic model, 
PM20D1 has been suggested as a protective gene of 
AD, whose elevated expression levels might provide a 

Fig. 5 Correlation of methylation β values at one of the 
representative CpG probes (cg05841700) with gene expression 
of PM20D1 for the ADNI cohort. An overall fit line and the fit lines 
stratified by the allelic doses of rs708727 are shown
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Table 5 Model summary for  the  effects of  Braak staging on  the  β values at  one of  the  representative CpG probes 
(cg26354017)

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

dx Effects Model statistics

variant Estimate SE t value Pr( >|t|) Signif. codes

Control (Intercept) 0.3302 0.1194 2.767 0.006 ** Residual SD 0.1008

Braak 0.0039 0.0064 0.602 0.548 Multiple r2 0.8457

rs708727 0.3340 0.0143 23.379  < 2e−16 *** Adjusted r2 0.8419

rs960603 0.0095 0.0140 0.682 0.496 F-statistic 226.9 (5/207 DF)

msex 0.0043 0.0147 0.290 0.772 p value  < 2.2E−16

age_death −0.0016 0.0014 −1.123 0.263

MCI (Intercept) 0.2988 0.1729 1.73 0.086 Residual SD 0.1016

Braak 0.0133 0.0082 1.63 0.106 Multiple r2 0.8476

rs708727 0.3446 0.0182 18.98  < 2e−16 *** Adjusted  r2 0.8423

rs960603 −0.0203 0.0183 −1.11 0.269 F-statistic 159.1 (5/143 DF)

msex 0.0245 0.0175 1.40 0.164 p value  < 2.2E−16

age_death −0.0014 0.0020 −0.70 0.483

AD (Intercept) 0.2564 0.1636 1.57 0.118 Residual SD 0.092

Braak 0.0166 0.0056 2.95 0.004 ** Multiple r2 0.8813

rs708727 0.3362 0.0146 23.06  < 2e−16 *** Adjusted r2 0.8788

rs960603 0.0102 0.0142 0.72 0.472 F-statistic 351.9 (5/237 DF)

msex −0.0140 0.0130 −1.08 0.282 p value  < 2.2E−16

age_death −0.0013 0.0018 −0.68 0.496

All (Intercept) 0.3262 0.0795 4.10 4.66e−05 *** Residual SD 0.097

Braak 0.0108 0.0034 3.16 0.0016 ** Multiple r2 0.8590

rs708727 0.3376 0.0087 38.79  < 2e−16 *** Adjusted r2 0.8578

rs960603 0.0038 0.0086 0.44 0.657 F-statistic 729.9 (5/599 DF)

msex 0.0015 0.0085 0.18 0.861 p value  < 2.2E−16

age_death −0.0018 0.0009 −1.86 0.063

Fig. 6 Methylation change as disease progresses modeled by β values regressed with Braak score at one of the representative CpG probes 
(cg26354017) from the ROSMAP brain samples. Scatter plot is colored by the allelic doses of rs708727 where red = 0 (GG), green = 1 (GA), and 
blue = 2 (AA). An overall linear fit line is also shown. Panel a depicts control group, b depicts MCI group, and c depicts AD group
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potential cellular defense mechanism. For AD non-risk-
haplotype carriers, specifically those with homozygous 
reference allele haplotype at both SNP rs708727 (GG) and 
rs960603 (CC), PM20D1 methylation level is lower; in 
the presence of AD-related stress, expression is enhanced 
to reduce ROS-induced cell death and Aβ levels and pre-
vent memory impairment. In contrast, in samples with 
hypermethylated PM20D1 (high risk, homozygous alter-
nate allele haplotype carriers, AA/TT), the promoter 
region is not contacted by the enhancer and transcription 
does not occur, which results in low PM20D1 expression, 
and there is no protective effect against Aβ. The role of 
PM20D1 in AD has since then been further explored [22, 
23], showing that it is the sole risk gene with consistently 
enriched promoter hypermethylation in AD patients, and 
upregulated by Aβ and reactive oxygen species, and being 
neuroprotective when overexpressed in cell and primary 
cultures.

In concordance with the previous mechanistic model, 
we first validated the allelic dosage effects on PM20D1 
promoter region in the blood samples, but found it is 
only due to the genotypes of rs708727. The allelic dos-
age of rs708727 has been found to be highly significant 
in determining the methylation level of the CpG sites, 
with higher dosage associated with higher baseline meth-
ylation quantitatively. Notably, this QTL has an effect size 
of ~ 25% (Fig.  3, Table  3). Although not most common, 
such effect size of a QTL has been reported in multiple 
studies, e.g., [24, 25]. In fact, this agrees almost perfectly 
with what is been observed in brain tissues as reported in 
the aforementioned work of Sanchez-Mut et al. [13, 22]. 
Interestingly, although rs960603 is reported to be co-seg-
regated as a haplotype in nearly 85% of cases in the 1000 
Genomes Project, its allelic dosage is not as significant in 
multiple tests within our analysis. This is in agreement 
with a most recent linkage disequilibrium analysis show-
ing in the haplotype, six SNPs (rs17772159, rs823074, 
rs803275, rs9438393, rs823090 and rs17772143) but 
not rs960603 were tightly linked to the lead QTL SNP 
rs708727 [26]. Our study thus confirms that PM20D1 is 
an mQTL mediated primarily by the AD-risk associated 
SNP (rs708727) as measured in peripheral blood. Fur-
thermore, we exploited the longitudinal data and dem-
onstrated that hypomethylation actually occurs before 
the symptomatic onset of the disease, conceivably to 
facilitate increasing expression of the gene to activate its 
protective function. As disease progresses, methylation 
level is gradually elevated in most of the CpG sites in the 
AD patients, which ultimately leads to depletion of the 
gene transcription and expression. This phenomenon is 
not observed in the control or MCI groups as their meth-
ylation levels are almost constant (Fig.  4). This explains 

the previously observed hypermethylation in late stage 
AD patients (Braak staging ≥ 5) in comparison with con-
trol. Our models provide a comprehensive picture of the 
dynamic change of the methylation profile at PM20D1 
promoter region, thus complementing the previous work 
[13]. Of note, the initial methylation decline for these 
probes actually prevails in AD vs control for all the strati-
fied genotypes of rs708727 (Additional file  8: Table  S8), 
indicating constant hypomethylation of the promoter 
region at the early stages of the disease regardless of 
the patient’s disease risk, although it seems that for the 
AD patients carrying the high-risk SNP, the methylation 
elevation is faster compared with those with lower risk 
(Additional file  9: Fig.  S3). In our LME model, random 
slopes of age are not tested due to limited data points 
per individual which would result in singular fit, or failed 
converge of the random slope model. By excluding the 
random slope for the priming manipulation, we assume 
that the priming effect of age (disease progression) is 
invariant across subjects in the population. This might be 
oversimplified and there is possibility that different risk 
groups possess different rates of increasing methylation 
level across the PM20D1 promoter region. This hypoth-
esis cannot be directly tested in the current dataset due 
to the small sample size of AD patients carrying the high-
risk SNP (n = 5), but it warrants further exploration with 
larger datasets in the future.

From the U-shape test for the subjects with converted 
diagnosis, it is identified that 78–79  years old would 
be the turning point for the methylation level of the 
probes. This matches the average initial diagnosis age 
for LOAD at ~ 78  years old in the general population 
[27]. Whether the turning point is triggered by some 
other factors or solely determined by age is something 
that requires further investigation. Furthermore, we 
found a sex-dependent effect on the methylation eleva-
tion for most of the probes, indicating that female is at 
higher risk for hypermethylation of PM20D1 promoter. 
This reveals yet another possible contributing factor to 
the females’ higher odds for AD [28, 29].

Despite this, hypomethylation does not necessar-
ily translate into higher gene expression. The correla-
tion between methylation profile and gene expression 
of PM20D1 from cross-sectional data clearly demon-
strated that only within the lower-risk genotype carri-
ers, there is an inverse linear relationship. Higher risk 
genotype carriers’ expression profiles are not correlated 
with methylation, which can be attributed to the inac-
cessibility of the enhancer to the gene promoter, as sug-
gested by the mechanism model for PM20D1 function 
in AD. These findings indicate that methylation signa-
tures at the PM20D1 locus are more robustly associated 
with conversion to AD, than PM20D1 expression.
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The methylation elevation trend after the onset of 
AD has been once more observed in brain tissues in 
the ROSMAP cohort, by using Braak stage as a proxy of 
the disease’s progression. The same correlation pattern 
between methylation and gene expression for PM20D1 
in the brain tissues, as well as the remarkable direct cor-
relation between blood and brain tissue’s methylation 
levels in the third independent cohort at the CpG sites 
provide strong evidence of a link between peripheral 
blood methylation profiles and AD-associated methyla-
tion differences in the brain tissues at PM20D1 region. 
Although sex’s effect has not been repeated in the brain 
tissues probably due to the fact the ROSMAP data has 
been adjusted for age and sex [30], our work illustrates 
that blood methylation at the PM20D1 promoter region 
could potentially serve as a surrogate for brain meth-
ylation for the study of epigenetics of this gene for AD 
pathology, along the course of disease evolution.

Of special note, we have also attempted the corre-
lation between PM20D1 methylation level and a few 
pathological biomarkers, in order to better understand 
the significance of PMD20D1 methylation in the evolu-
tion of AD pathology. For the ROSMAP cohort, meth-
ylation level of PM20D1 might be positively associated 
with amyloid in AD patients (p < 0.05 for 3 out of 8 
probes in total), but not in MCI (1 probe), nor control 
(0 probe) or the overall group (1 probe) (Additional 
file 5: Table S5). For tangles, there is no association of 
PM20D1 methylation in any of the three diagnostic 
subgroups, but a weak association in the overall group 
(p < 0.05 for 3 out of 8 probes), probably due to larger 
sample size and wider range of tangle scores. In the 
ADNI cohort, there is no correlation with any of the 
biomarkers (Aβ1-42, t-tau and p-tau181) from cer-
ebral spinal fluid (CSF) in any of the three diagnostic 
subgroups, or the overall group (results not shown, bio-
marker data from [31]), but some positive correlations 
were found for p-tau181 in plasma, for AD patients only 
(p < 0.05 at 3 probes, Additional file 3: Table S3). This is 
in line with the report that plasma p-tau181 has greater 
variability than CSF p-tau181 and may be differently 
regulated depending on Aβ status [32]. Recently, it has 
been demonstrated that plasma ptau-181 is an indica-
tor of very early brain amyloidosis [33], so the findings 
imply that PM20D1 could play a role in the metabolism 
of amyloid proteins, showing correlation with Aβ bio-
markers, but not quantitative tangle scores. Another 
possible scenario is that soluble amyloid peptide, or 
other secondary factors associated with very early amy-
loidosis in the brain, actually triggers hypomethylation 
of PM20D1 in AD patients, and insoluble plagues in 
AD stages further affects its methylation level, so the 
correlation is observed with Aβ deposition.

As a circulating enzyme, PM20D1 regulates a class of 
N-lipidated amino acids in  vivo, and these metabolites 
function as endogenous uncouplers of mitochondrial 
respiration [34]. It has been implicated in obesity, type 
2 diabetes [34], pain [35] and more recently, Alzhei-
mer’s disease [13]. In mouse models, PM20D1 activity 
was dramatically increased in lipoprotein fractions from 
APOE-knockout (KO) mice versus wild-type mice. The 
activation of the PM20D1/N-acyl amino acid pathway is 
suggested as a contributor to the protection from meta-
bolic and neurological diseases observed in APOE-KO 
mice [36]. The recent study focusing on PM20D1′s role in 
AD demonstrated that PM20D1 expression is increased 
both in  vitro and in  vivo following neurotoxic insults, 
probably by activating the hypomethylation machin-
ery as illustrated in our work. Forced overexpression of 
PM20D1 in the hippocampus results in improved learn-
ing performance in the mouse model of AD, whereas 
PM20D1 knockdown increases amyloid plaque load, so 
it has been suggested to have a protective role against 
AD. Given that LOAD has also been suggested as a meta-
bolic disorder [37–39], the interplay of PM20D1, more 
specifically how it operates a protective function against 
AD, together with other genes implicated in the metabo-
lism for LOAD could help advance our understanding of 
the disease, and subsequently more efficient hunting for 
therapeutics.

Accurate, minimally invasive and timely diagnosis of 
probable AD in living individuals has always been chal-
lenging, although most recently great breakthroughs are 
being made in blood-based biomarkers, such as p-tau181 
[32] and p-tau217 [40, 41]. Multiple factors contribute 
to it, such as heterogenicity of the disease, inaccessibil-
ity of the pathological tissues, and lack of robust and 
readily measurable biomarkers [6]. The dynamic meth-
ylation alteration for PM20D1, depicted by the longitu-
dinal data with individuals both before disease onset and 
following clinical diagnosis opens a probable channel to 
monitor the disease, and the possibility of a diagnostic 
tool. Notably, the initial methylation decrease is univer-
sal to all the risk-associated SNP genotypes (Additional 
file  8: Table  S8), highlighting its application potential 
regardless of the genotypes of the SNP locus, thus asso-
ciated disease risk. The random effect from LME mod-
eling shows that intra-individual methylomic variation 
at PM20D1 (SD > 0.1 for RID) is still non-negligible after 
controlling fixed effects from age, sex, allelic dosage of 
rs708727 and rs960603. Notably, APOE status has been 
initially considered as a covariant in all of our studies, 
but the effect is not significant (p > 0.1), thus not included 
in the final analysis. While there are presumptively still 
other factors underlining the baseline methylomic β val-
ues for PM20D1 promoter, the overall trend of individual 
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methylation change, instead of absolute methylation level 
(which is primarily determined by the SNP allelic dose), 
is worthy of further evaluation. The current study is the 
first of its kind applying large-scale longitudinal data 
to obtain novel insights into the epigenetic signature 
of PM20D1 intervening with LOAD. Further in-depth 
study, including those in animal models and patients, as 
well as its precise relationship with Aβ proteins and p-tau 
levels in blood could help define its sensitivity and speci-
ficity to differentiate AD from non-AD and its broader 
utility down the road.

The preliminary result we observed in the longitudinal 
data from ADNI cohort is just one piece of evidence that 
there is correlation for specific pathological changes in 
AD between different tissues from different cohorts, as 
manifested at PM20D1 locus. An expansive analysis that 
addresses DMR and longitudinal data in an integrated 
model would reveal even more exciting findings; never-
theless, it requires tremendous computational resources 
and innovative methodologies and tools, which is worth 
active pursuing. The current study exemplified utilization 
of the data to distill useful information in the epigenetic 
landscape of AD. Further exploitation is thus warranted 
and would be beneficial to the early diagnosis and effec-
tive treatment of the formidable disease.

Conclusions
The longitudinal data from ADNI methylation profil-
ing present compelling evidences demonstrating that 
changes to the methylome in LOAD detected in blood 
could reflect pathologic processes implicated in ongoing 
neurodegeneration in the brains. Specifically to PM20D1 
gene locus, it clearly confirms PM20D1 is a methylation 
QTL essentially coupled to an AD-risk associated SNP 
rs708727, and illustrates its dynamic role of being hypo-
methylated in the conversion phase and gradually turning 
into hypermethylation after onset and during progression 
of the disease. Our results call for further study, both 
for PM20D1′s role in AD pathology and its potential as 
a blood-based biomarker, to address the urgent need of 
early detection and treatment of AD.

Methods
Study cohort and data source
ADNI data were all downloaded from the ADNI data-
base (http://adni.loni.usc.edu/). The ADNI was launched 
in 2003 as a public–private partnership, led by Principal 
Investigator Michael W. Weiner, MD. The primary goal 
of ADNI has been to test whether serial magnetic reso-
nance imaging (MRI), positron emission tomography 
(PET), other biological markers, and clinical and neu-
ropsychological assessment can be combined to measure 
the progression of mild cognitive impairment (MCI) and 

early Alzheimer’s disease (AD). For up-to-date informa-
tion, see www.adni-info.org. For details of the methyla-
tion profiling procedure, refer to the documentation on 
the genetic data download page. Briefly, DNA methyla-
tion profiling was performed at AbbVie from a total of 
1,920 blood samples, including 1719 unique samples and 
201 technical replicates (653 unique individuals). Lon-
gitudinal DNA samples at baseline and follow-ups were 
obtained from the cohort. The Illumina Infinium Human-
MethylationEPIC BeadChip Array (www.illum ina.com), 
which covers ~ 866,000 CpGs, was used for methylation 
profiling. After multiple steps of quality check (QC), 
1905 samples from 649 subjects were retained and raw 
methylation data (idat files) were released and analyzed 
in our study.

Genotype data were obtained from ADNI whole-
genome sequencing (WGS) panel, where genotypes 
were called by the ADNI genetics core using the pipe-
line following Broad best practices (BWA [42] and 
GATK HaplotypeCaller [43, 44]). Gene expression data 
were obtained from blood samples from the 811 partici-
pants in the ADNI WGS cohort. The Affymetrix Human 
Genome U219 Array (Affymetrix (www.affym etrix .com), 
Santa Clara, CA) was used for expression profiling. The 
processed gene expression profile was downloaded and 
used for analysis. Diagnosis data and other demograph-
ics (sex, date of birth) were also obtained from ADNI 
database. Subject selection for the different study sec-
tions and the workflow of the ADNI cohort are outlined 
in Fig. 7a).

All the data from ROSMAP cohort [45, 46] were down-
loaded from Accelerating Medicines Partnership-Alzhei-
mer’s Disease (AMP-AD) Knowledge Portal following 
required guidelines. Methylation β values at the inter-
esting CpG probes were obtained from the methylation 
profile generated on prefrontal cortex samples collected 
from 740 individuals using the Illumina HumanMethyla-
tion450 BeadChip [7]. Genotypes at the interesting loci 
were extracted from the published WGS data from 1196 
subjects [30]. Gene expression Fragments Per Kilobase of 
transcript per Million mapped reads (FPKM) values were 
obtained from bulk RNAseq data, where samples were 
taken from the gray matter of the dorsolateral prefrontal 
cortex of 724 subjects [30] and the data for 640 subjects 
were available for download. Clinical and neuropathol-
ogy data including final diagnosis and Braak stages were 
matched for each individual and used in the analysis. 
Subject selection for the different study sections and the 
workflow of the ROSMAP cohort are outlined in Fig. 7b).

ADNI methylation data quality control and normalization
Raw DNA methylation data (idat files) were imported 
into R, and the Bioconductor package ‘bigmelon’ [47] was 

http://adni.loni.usc.edu/
http://www.adni-info.org
http://www.illumina.com
http://www.affymetrix.com
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used for initial data processing. Detection p values (detP), 
methylation (M) and unmethylation (uM) intensities and 
β values defined as the ratio between the methylated and 
total signals (M + uM) were calculated and exported. The 
ChAMP pipeline [48] for EPIC array was then used for 
all the downstream analysis following the default work-
flow. Multiple filtering steps were first applied, by exclud-
ing probes with detection p value (default > 0.01), probes 
with < 3 beads in at least 5% of samples per probe, all 
non-CpG probes contained in the dataset [49], all SNP-
related probes, all multi-hit probes and all probes located 
in sex chromosomes [50]. Data were then normalized 
with BMIQ method [51], and batch effects from chip 
slide were corrected by ComBat [52]. Cell proportion was 
calculated based on a reference DNA methylation pro-
file, and cell type influence on the whole blood data was 
removed by RefbaseEWAS [53]. The ‘estimateCellCounts’ 
function in minfi [54] was used to estimate the propor-
tional abundance of blood cell types in the each sample 
based on the intensity of specific for inter-group compar-
isons as probes present in the EPIC array.

Differential methylated region (DMR) detection
Since the longitudinal data consist of 649 subjects sam-
pled at dates spanning up to 5  years with 390 subjects 
having at least 3 visits’ data, many of the subjects have 
changed their diagnostic status over the time course. To 
focus on the study of LOAD, 70 subjects with sampling 
age < 65 at any time point were removed. The diagnosis 
dates were compared against the blood sample collect-
ing dates for each of the remaining 579 subjects, and 
the closest diagnosis in time (< 0.5 years) was chosen as 
the diagnosis for each individual sample. For clear DMR 
detection, only those samples keeping a stable diagno-
sis (i.e., control, MCI, or AD across all the time points 
for each subject, respectively) were retained for analy-
sis. This left 424 total subjects for the DMR detection. 
Among them, 162 were control, 175 were MCI, and the 
remaining 87 were AD patients. DMRs were detected 
using the baseline β values by the BumperHunter method 
implemented in ChAMP [55]. When technical replicates 
exist for the same sample, one data point was randomly 
picked. Comparisons were made for AD vs control, AD 
vs MCI and MCI vs control, respectively.

Allelic dosage effect in the DMR region at baseline
Out of the 424 subjects with stable diagnosis, 423 were 
genotyped by WGS. Their baseline measurements used 
for DMR detection were also used for modeling the dos-
age effect of the two reported associated SNP rs708727 
(GG = 0, GA = 1, and AA = 2) and rs960603 (CC = 0, 
CT = 1 and TT = 2). Their effects to the β values of the 
probes at the promoter regions of the PM20D1 gene 

locus were modeled by the lm function in R, using age, 
sex as covariates, stratified by the diagnosis group. The 
formula, in R syntax, for the model is:

Longitudinal data modeling
Longitudinal analysis was performed on the whole longi-
tudinal data for 540 total subjects with genotypes avail-
able from the WGS panel (423 stable diagnosis, 117 
converted cases). Their demographics profile is reported 
in Table 6. For the subjects with a stable diagnosis, linear 
mixed-effects (LME) models were fit for the β values for 
the probes at the promoter regions of the PM20D1 gene 
locus, for the 162 controls, 174 MCI patients and 87 AD 
patients, respectively, by the lmer function in the R pack-
age ‘lmerTest’ [56]. The formula for the linear mixed-
effects model is:

where age, sex and the allelic dosages for the two 
known SNP rs708727 and rs960603 were modeled as 
fixed effects, and subject ID (RID), array and slide were 
modeled as random effects.

The exam dates from plasma p-tau181 data (obtained 
from recent ADNI release http://adni.loni.usc.edu/
new-longi tudin al-plasm a-p-tau18 1-resul ts-avail able/) 
were matched against the dates for sample collection of 
the methylation array, and data from 412 subjects (159 
controls, 174 MCI and 79 AD patients) were fit by LME 
model using the formula:

where ptau is log transformed and modeled as fixed 
effect.

β ∼ rs708727+ rs960603+ age + sex

β ∼ age + sex + rs708727+ rs960603+ (1|RID)

+ (1|Slide)+ (1|Array)

β ∼ ptau+ sex + rs708727+ rs960603+ (1|RID)

+ (1|Slide)+ (1|Array)

Table 6 Demographic profile for  the  subjects 
in  the  longitudinal data analysis by  different diagnosis 
groups

Demographics Stable diagnosis Converters

Control MCI AD

Total subjects 162 174 87 117

Male/female 79/83 104/70 57/30 68/49

# of visits 2.66 ± 0.69 2.63 ± 0.68 2.10 ± 0.99 3.10 ± 0.88

Age at visits 77.34 ± 6.19 75.78 ± 6.20 79.01 ± 6.62 78.18 ± 6.33

Duration of 
follow-ups

1.71 ± 0.71 1.73 ± 0.67 1.12 ± 1.00 2.07 ± 0.95

http://adni.loni.usc.edu/new-longitudinal-plasma-p-tau181-results-available/
http://adni.loni.usc.edu/new-longitudinal-plasma-p-tau181-results-available/
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Fig. 7 Workflow and subject selection for the study outlined in this work
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For the group of 117 subjects with changed diag-
nosis, a U-shape test was carried out by the two-line 
method  introduced by Simonsohn [57] and using the 
code (http://webst imate .org/twoli nes/twoli nes.R), testing 
if age has a U-shaped effect on β values, controlling for 
sex, allelic dosages of rs708727 and rs960603. The break-
point is set using the "Robin Hood" algorithm, seeking to 
obtain higher power to detect a U-shape if it is present 
[57].

Methylation correlation with gene expression
For the 423 subjects with stable diagnosis (as well as gen-
otype data), gene expression data were also available from 
ADNI microarray profiling. All the gene expression data 
were cross-sectional, and only information on sample 
collection years is available. The sample collection years 
were matched against the methylation profiling sample 
collection years, and those samples collected in the same 
year were deemed as a matching expression-methylation 
data pair for each subject. The collection years were more 
than one year apart between methylation and expression 
samples for two subjects; thus, they were excluded from 
this analysis. The relationship between gene expression of 
PM20D1 and the β value for each probe was modeled for 
the 421 data pairs by the lm function in R, using age, sex, 
diagnosis and allelic dosages of rs708727 and rs960603 as 
covariates, following the equation:

Methylation data analysis for ROSMAP cohort
Subjects’ clinical diagnosis, Braak stages for brain tissues 
and demographic information including sex and age at 
death were obtained from AMP-AD portal. A total of 677 
subjects were found to have genotypes, Braak stages and 
methylation profiles available. Only those subjects with 
diagnosis as no cognitive impairment (control) or MCI/
AD without any other cause of cognitive impairment 
(cogdx = 1, 2 or 4), totaling 605 subjects were included in 
the final analysis. They were stratified by the diagnosis, 
and linear regression models in respect to Braak stage, 
(log transformed) amyloid and (log transformed) tangles 
were built for the β values of the 8 CpG probes at the pro-
moter regions for PM20D1, respectively, controlling for 
age, sex, allelic dosages of rs708727 and rs960603, using 
the lm function in R. Gene expression data were also 
matched with the methylation data, and 448 subjects out 
of the 605 were found to have gene expression data from 
RNASeq profiling. Linear regression models were built 
between gene expression FPKM value of PM20D1 and 
the β value at each probe for the 448 data pairs by the lm 
function in R, using age, sex, diagnosis and allelic dosages 
of rs708727 and rs960603 as covariates.

e ∼ β + age + sex + dx + rs708727+ rs960603

DNA methylation correlation between brain tissue 
and whole blood
We utilized the Blood Brain DNA Methylation Compari-
son Tool (https ://epige netic s.essex .ac.uk/blood brain /), 
which allows systematic investigation of the correlation 
of DNA methylation in blood with four brain regions 
(prefrontal cortex, entorhinal cortex, superior temporal 
gyrus and cerebellum) from 71 to 75 matched samples in 
the MRC London Neurodegenerative Disease Brain Bank 
[8] for all probes present on the Illumina 450 K Beadchip 
array [17]. The cohort included both neuropathologically 
unaffected controls and individuals with variable levels 
of neuropathology. The data are from published results 
in 4 dissected brain regions (PFC: n = 114, EC: n = 108, 
STG: n = 117 and CER: n = 112) and matched premor-
tem whole blood samples (n = 80) from an overlapping 
set of 122 individuals [17]. All the correlation values were 
obtained directly from the database.
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Additional file 8. Table S8: Mean β values and their standard deviations 
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Additional file 9. Figure S1. Correlation of methylation β values at one 
of the representative CpG probes (cg14149672) with gene expression 
of PM20D1 (FPKM) for the ROSMAP cohort brain samples. An overall fit 
line and the fit lines stratified by the allelic doses of rs708727 are shown. 
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regions (prefrontal cortex, entorhinal cortex, superior temporal gyrus and 
cerebellum) from 71-75 matched samples for one of the representative 
probes (cg11965913). The figure is taken from the Blood Brain DNA Meth-
ylation Comparison Tool (17) (https ://epige netic s.essex .ac.uk/blood brain 
/index .php?probe nameg =cg119 65913 ). Figure S3. Methylation change 
as disease progresses in the AD patients, modeled by β values regressed 
with age at one of the representative CpG probes (cg14893161). Scatter 
plot is colored by the allelic doses of rs708727 where red = 0, green = 1, 
and blue = 2. An overall linear fit line, as well as the fit lines for each allelic 
dose group are also shown.
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